

Raw Material Properties						
Material Grade / Fibre	Steel ASTM A131 – A	Aluminum 5083 – H321	Glass Fibre E – Glass	Carbon Fibre Torayca T300		
Density (kg/m³)	7,850	2,660	2,580	1,760		
Tensile Modulus (GPa)	140	70	72	230		
Tensile Strength (MPa)	400	317	1,950	3,530		
Shear Modulus (GPa)	80	26	30	12		
Shear Strength (MPa)	280	190	1,125	2,036		
Strain to Fail (%)	24.0	16.0	5.0	1.5		

Reduced Reinforcement Material

- Carbon Epoxy 3 Core 3 layup
- E Glass Epoxy 6 Core 6 layup
- 35mm Core Thickness

Beam Scenario	Variable	Carbon	E – Glass
500 x 1250 Beam	Max Deflection	0.063	0.068
500 x 1250 Beam	Bending Stress	204	103
500 v 2500 Boom	Max Deflection	0.554	0.601
500 x 2500 Beam	Bending Stress	448	225
500 v 5000 Boom	Max Deflection	4.634	5.020
500 x 5000 Beam	Bending Stress	934	470

Reduced Reinforcement Material

- Plate panel sized to sample Azimut Yacht design dimensions
- 2003 and 2013 reinforcement pricing of layups

Beam Scenario	Variable	Carbon	E – Glass	% Difference
	Total Layers in Layup	6 + Core	12 + Core	+100
	Max Deflection (mm)	1.215	1.273	+5
1585 x 1840 Panel	Bending Stress (MPa) Safety Factor	426 SF = 1.7	214 SF = 2.5	-50
8mm Core	Layup Weight (g/m²)	1,165	3,301	+183
	2003 Reinforcement Cost (€)	128	28	-78
	2013 Reinforcement Cost (€)	216	288	+33

Manufacture Process

- Consideration of full 'picture' required
 - Reinforcement (0/90°, +/-45°, Weave Type, Woven / Stitched)
 - Resin (Chemical Type, Polymerisation Process Chosen)
 - Curing (Temperature Regime, Min Pressure, Time)
- Claimed Mechanical Properties (Testing Method)

Material Property	Hexcel (0/90°)	SGL Group (4x +/- 45°)	Δ (%)	
Areal Weight	g/m²	600	673	12.2
Tensile Modulus	GPa	65	54	-16.9
Tensile Strength	MPa	900	810	-10.0
Tensile FVF	-	0.60	0.50	-16.7
Cured Ply Thickness	mm	0.575	0.460	-20.0

All Carbon Design

Displacement [Magnitude] (mm) Max Displacement = 54.4

Stress [VM] (MPa)
Max Stress= 117
(RINA = 304 MPa)

Equivalent Stiffness

All E-Glass

- E-Glass reinforcement
 - Plate and Stiffener
- Prepreg Epoxy
 - Bi-Axial 600g/m²
 - UD 600g/m²
- · Method to obtain stiffness
 - Increased Core Thickness
 - Additional Reinforcement Layers
 - Reduction in Stiffener Spacing

Hybrid Structure

- Material Combination
 - E-Glass for Plate Reinforcement
 - Carbon stiffener flange
- Prepreg Epoxy
 - E-Glass Bi-Axial 600g/m²
 - E-Glass UD 600g/m²
 - Carbon UD 476g/m²
- Method to obtain stiffness
 - Increased Core Thickness
 - Additional Reinforcement Layers

Summary of Designs						
Scenario	Bi-Axial Layers	UD Layers	Plate Core Thickness (mm)	Stiffener Core Thickness (mm)	Δ%	
Carbon Control	6	2 + 10	20, 100	120, 180	-	
E-Glass Extra Core	6	2 + 10	27, 135	162, 243	+35%	
E-Glass Reinforcement	10	3 + 13	20, 100	120, 180	+42%	
Hybrid Extra Core	6	2 + 10	23, 116	139, 209	+16%	
Hybrid Reinforcement	8	3 + 12	20, 100	120, 180	+25%	

		Structural We	ight Adva	antage
	Reinforcement Material	Model Setup Details	Max Deflection (mm)	Structural Weight (kg)
	All Carbon	180mm Max Depth, RINA, Azimut Reqs.	54.4	600
	All E–Glass	180mm Max Depth (Control)	<u>79.8</u>	738
		_50% Stiffener Spacing	<u>61.9</u>	811
		+35% Core Thickness	53.0	874
		+42% Reinforcement Layers	52.2	948
		180mm Max Depth (Control)	<u>67.1</u>	726
	E–Glass Plate, Carbon Stiffeners	+16% Core Thickness	54.3	800
		+25% Reinforcement Layers	53.7	849

		Material Cos	st Compa	arison
	Reinforcement Material	Model Setup Details	Max Deflection (mm)	Material Costs (€)
	All Carbon	180mm Max Depth, RINA, Azimut Reqs.	54.4	31,634
	All E–Glass	180mm Max Depth (Control)	<u>79.8</u>	25,329
		_50% Stiffener Spacing	<u>61.9</u>	27,996
		+35% Core Thickness	53.0	29,188
		+42% Reinforcement Layers	52.2	33,810
		180mm Max Depth (Control)	<u>67.1</u>	25,943
	E–Glass Plate, Carbon Stiffeners	+16% Core Thickness	54.3	27,706
		+25% Reinforcement Layers	53.7	30,561

Depth, Weight, Cost				
Material Setup	Max. Number of Layers	Stiff. Depth (mm)	Weight Increase (kg)	Cost Reduction (€)
Carbon Control	<u>16</u>	<u>180</u>	(600)	(31,364)
E – Glass Core	16	243	+274	2,446
E – Glass Reinforcement	23	180	+349	[-2,176]
Hybrid Core	16	209	+188	3,927
Hybrid Reinforcement	20	180	+234	1,073

Ermis²

- LOA = 38m
- V_{max} = 55 knots

Laurel

- LOA = 73m
- Low S/S Profile Requirement

Production Methods

- Improving Fibre Volume Fractions
 - Open Mould Hand Layup
 - Closed Mould Resin Infusion
 - Vacuum Bagging w/ Prepregs
- Decrease in required resin
 - Void Reduction
 - Consistency of cured properties
 - Higher performance resins (Epoxy)
- Shipyard Emission Reductions
 - Environmental & Worker Safety
 - Move to Closed Moulding

